Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Information Technology Services Directorate (3)
Researcher
- Blane Fillingim
- Brian Post
- Eddie Lopez Honorato
- Lauren Heinrich
- Peeyush Nandwana
- Ryan Heldt
- Sudarsanam Babu
- Thomas Feldhausen
- Tyler Gerczak
- Yousub Lee
- Annetta Burger
- Callie Goetz
- Carter Christopher
- Chance C Brown
- Christopher Hobbs
- Debraj De
- Fred List III
- Gautam Malviya Thakur
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Keith Carver
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mark Provo II
- Matt Kurley III
- Ramanan Sankaran
- Richard Howard
- Rob Root
- Rodney D Hunt
- Sam Hollifield
- Thomas Butcher
- Todd Thomas
- Vimal Ramanuj
- Wenjun Ge
- Xiuling Nie

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.