Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Eddie Lopez Honorato
- Ryan Heldt
- Tyler Gerczak
- Annetta Burger
- Callie Goetz
- Carter Christopher
- Chance C Brown
- Christopher Hobbs
- Dave Willis
- Debraj De
- Fred List III
- Gautam Malviya Thakur
- James Gaboardi
- Jesse McGaha
- Keith Carver
- Kevin Sparks
- Liz McBride
- Luke Chapman
- Matt Kurley III
- Richard Howard
- Rodney D Hunt
- Sydney Murray III
- Thomas Butcher
- Todd Thomas
- Vasilis Tzoganis
- Vasiliy Morozov
- Xiuling Nie
- Yun Liu

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

The technology describes an electron beam in a storage ring as a quantum computer.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.