Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Adam M Guss
- Josh Michener
- Edgar Lara-Curzio
- Liangyu Qian
- Andrzej Nycz
- Austin L Carroll
- Eric Wolfe
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Serena Chen
- Steven J Zinkle
- Udaya C Kalluri
- Xiaohan Yang
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Alexander Enders
- Alexander I Wiechert
- Alex Walters
- Benjamin Manard
- Biruk A Feyissa
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Carrie Eckert
- Charles F Weber
- Charles Hawkins
- Chris Masuo
- Christopher S Blessinger
- Clay Leach
- Costas Tsouris
- Debjani Pal
- Derek Dwyer
- Frederic Vautard
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Joanna Mcfarlane
- Joanna Tannous
- Jonathan Willocks
- Junghyun Bae
- Kyle Davis
- Louise G Evans
- Marie Romedenne
- Matt Vick
- Mengdawn Cheng
- Nidia Gallego
- Paul Abraham
- Paula Cable-Dunlap
- Richard L. Reed
- Rishi Pillai
- Tim Graening Seibert
- Vandana Rallabandi
- Vilmos Kertesz
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- William Alexander
- Xiang Chen
- Yang Liu

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.