Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Information Technology Services Directorate (3)
Researcher
- Adam Willoughby
- Rishi Pillai
- Annetta Burger
- Brandon Johnston
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Debangshu Mukherjee
- Debraj De
- Gautam Malviya Thakur
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Jiheon Jun
- Josh Michener
- Kevin Spakes
- Kevin Sparks
- Liangyu Qian
- Lilian V Swann
- Liz McBride
- Marie Romedenne
- Mark Provo II
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Priyanshi Agrawal
- Rob Root
- Sam Hollifield
- Serena Chen
- Todd Thomas
- Xiuling Nie
- Yong Chae Lim
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.