Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Adam Willoughby
- Eddie Lopez Honorato
- James A Haynes
- Rishi Pillai
- Ryan Heldt
- Sumit Bahl
- Tyler Gerczak
- Alice Perrin
- Andres Marquez Rossy
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Christopher Hobbs
- Gerry Knapp
- Jiheon Jun
- Jovid Rakhmonov
- Marie Romedenne
- Matt Kurley III
- Nicholas Richter
- Peeyush Nandwana
- Priyanshi Agrawal
- Rodney D Hunt
- Ryan Dehoff
- Sunyong Kwon
- Ying Yang
- Yong Chae Lim
- Zhili Feng

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 簣 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.