Filter Results
Related Organization
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (26)
Researcher
- Adam M Guss
- Isabelle Snyder
- Josh Michener
- Liangyu Qian
- Adam Siekmann
- Adam Willoughby
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Emilio Piesciorovsky
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Rishi Pillai
- Serena Chen
- Subho Mukherjee
- Udaya C Kalluri
- Vilmos Kertesz
- Vivek Sujan
- Xiaohan Yang
- Aaron Werth
- Aaron Wilson
- Alex Roschli
- Alex Walters
- Ali Riza Ekti
- Austin Carroll
- Brandon Johnston
- Brian Sanders
- Bruce A Pint
- Charles Hawkins
- Chris Masuo
- Clay Leach
- Debjani Pal
- Elizabeth Piersall
- Erin Webb
- Eve Tsybina
- Evin Carter
- Gary Hahn
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Jiheon Jun
- Joanna Tannous
- Kitty K Mccracken
- Kyle Davis
- Marie Romedenne
- Mengdawn Cheng
- Nandhini Ashok
- Nils Stenvig
- Oluwafemi Oyedeji
- Ozgur Alaca
- Paul Abraham
- Paula Cable-Dunlap
- Priyanshi Agrawal
- Raymond Borges Hink
- Soydan Ozcan
- Tyler Smith
- Vincent Paquit
- Viswadeep Lebakula
- Xianhui Zhao
- Yang Liu
- Yarom Polsky
- Yasemin Kaygusuz
- Yong Chae Lim
- Zhili Feng

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).