Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ying Yang
- Yong Chae Lim
- Zhili Feng
- Adam Willoughby
- Alice Perrin
- Bruce A Pint
- Jian Chen
- Rangasayee Kannan
- Rishi Pillai
- Ryan Dehoff
- Steven J Zinkle
- Wei Zhang
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alex Plotkowski
- Amit Shyam
- Benjamin Lawrie
- Brandon Johnston
- Brian Post
- Bryan Lim
- Charles Hawkins
- Chengyun Hua
- Christopher Ledford
- Costas Tsouris
- Dali Wang
- David S Parker
- Gabor Halasz
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- Jiaqiang Yan
- Jiheon Jun
- Jong K Keum
- Marie Romedenne
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Petro Maksymovych
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.