Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Information Technology Services Directorate (3)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Annetta Burger
- Benjamin Lawrie
- Bryan Maldonado Puente
- Carter Christopher
- Chance C Brown
- Chengyun Hua
- Corey Cooke
- Debraj De
- Gabor Halasz
- Gautam Malviya Thakur
- Gina Accawi
- Gurneesh Jatana
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Jiaqiang Yan
- John Holliman II
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mark M Root
- Mark Provo II
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Petro Maksymovych
- Rob Root
- Ryan Kerekes
- Sally Ghanem
- Sam Hollifield
- Todd Thomas
- Xiuling Nie

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).