Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam M Guss
- Amit Shyam
- Josh Michener
- Alex Plotkowski
- Lawrence {Larry} M Anovitz
- Liangyu Qian
- Andrzej Nycz
- Isaiah Dishner
- James A Haynes
- Jeff Foster
- John F Cahill
- Kuntal De
- Ryan Dehoff
- Serena Chen
- Sumit Bahl
- Udaya C Kalluri
- Xiaohan Yang
- Adam Stevens
- Alex Walters
- Alice Perrin
- Andres Marquez Rossy
- Andrew G Stack
- Austin L Carroll
- Biruk A Feyissa
- Brian Post
- Carrie Eckert
- Chris Masuo
- Christopher Fancher
- Clay Leach
- Dean T Pierce
- Debjani Pal
- Gerald Tuskan
- Gerry Knapp
- Gordon Robertson
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Joanna Tannous
- Jovid Rakhmonov
- Juliane Weber
- Kyle Davis
- Nicholas Richter
- Paul Abraham
- Peeyush Nandwana
- Peng Yang
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Sai Krishna Reddy Adapa
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Vilmos Kertesz
- Vincent Paquit
- William Peter
- Yang Liu
- Ying Yang
- Yukinori Yamamoto

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.