Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Fusion and Fission Energy and Science Directorate (24)
Researcher
- Costas Tsouris
- Andrew Sutton
- Michelle Kidder
- Radu Custelcean
- Gyoung Gug Jang
- Hongbin Sun
- Venugopal K Varma
- Alexander I Wiechert
- Eddie Lopez Honorato
- Gs Jung
- Mahabir Bhandari
- Michael Cordon
- Prashant Jain
- Ryan Heldt
- Tyler Gerczak
- Adam Aaron
- Ajibola Lawal
- Alexander Enders
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Callie Goetz
- Canhai Lai
- Charles D Ottinger
- Charles F Weber
- Christopher Hobbs
- Christopher S Blessinger
- Dhruba Deka
- Fred List III
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- James Parks II
- Jeffrey Einkauf
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Mike Zach
- Mina Yoon
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Sam Hollifield
- Sergey Smolentsev
- Sreshtha Sinha Majumdar
- Steven J Zinkle
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Ugur Mertyurek
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Yanli Wang
- Yeonshil Park
- Ying Yang
- Yutai Kato

The diol compound derived from fermentation broth 2,3-butanediol (BDO) can be used as a feedstock for sustainable liquid fuel generation.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.