Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Vandana Rallabandi
- Subho Mukherjee
- Ali Passian
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Burak Ozpineci
- Gui-Jia Su
- Omer Onar
- Shajjad Chowdhury
- Ying Yang
- Alex Plotkowski
- Brian Post
- Edgar Lara-Curzio
- Joseph Chapman
- Jun Qu
- Mostak Mohammad
- Nicholas Peters
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Veda Prakash Galigekere
- Yong Chae Lim
- Zhili Feng
- Adam Willoughby
- Alice Perrin
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- Costas Tsouris
- David S Parker
- Eric Wolfe
- Himel Barua
- Hsuan-Hao Lu
- James A Haynes
- Jian Chen
- Joseph Lukens
- Lauren Heinrich
- Meghan Lamm
- Michael Kirka
- Muneer Alshowkan
- Pedro Ribeiro
- Rafal Wojda
- Rishi Pillai
- Rob Moore II
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Alexander I Wiechert
- Andres Marquez Rossy
- Andrew F May
- Anees Alnajjar
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Sales
- Brian Williams
- Bryan Lim
- Charles F Weber
- Charles Hawkins
- Christopher Fancher
- Claire Marvinney
- David J Mitchell
- Dean T Pierce
- Erdem Asa
- Ethan Self
- Frederic Vautard
- Gabriel Veith
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Hongbin Sun
- Hsin Wang
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jiheon Jun
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Jong K Keum
- Jon Wilkins
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Lingxiao Xue
- Mariam Kiran
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Matt Vick
- Mike Zach
- Mina Yoon
- Nance Ericson
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Peter Wang
- Praveen Cheekatamarla
- Praveen Kumar
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergiy Kalnaus
- Srikanth Yoginath
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Varisara Tansakul
- Venugopal K Varma
- Vishaldeep Sharma
- Vivek Sujan
- Weicheng Zhong
- Wei Tang
- Wei Zhang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

Stacked die in power electronics refers to a packaging approach where multiple semiconductor dies are vertically integrated or "stacked" in a single package.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

Induction cooktops are becoming popular; however, a limitation is that compatible cookware is required. This is a significant barrier to its adoption.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.