Filter Results
Related Organization
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Biological and Environmental Systems Science Directorate (29)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Adam M Guss
- Steven Guzorek
- Ilias Belharouak
- Vipin Kumar
- David Nuttall
- Josh Michener
- Soydan Ozcan
- Brian Post
- Dan Coughlin
- Liangyu Qian
- Nadim Hmeidat
- Steve Bullock
- Tyler Smith
- Alexey Serov
- Ali Abouimrane
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Brittany Rodriguez
- Carrie Eckert
- Daniel Jacobson
- Halil Tekinalp
- Isaiah Dishner
- Jaswinder Sharma
- Jeff Foster
- Jim Tobin
- John F Cahill
- Kuntal De
- Marm Dixit
- Pum Kim
- Ruhul Amin
- Segun Isaac Talabi
- Serena Chen
- Subhabrata Saha
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- Vilmos Kertesz
- Xiang Lyu
- Xianhui Zhao
- Xiaohan Yang
- Adam Stevens
- Alex Roschli
- Alex Walters
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Brian Sanders
- Chris Masuo
- Clay Leach
- Craig Blue
- Dali Wang
- David L Wood III
- Debjani Pal
- Erin Webb
- Evin Carter
- Gabriel Veith
- Georges Chahine
- Georgios Polyzos
- Gerald Tuskan
- Holly Humphrey
- Hongbin Sun
- Ilenne Del Valle Kessra
- James Szybist
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Jian Chen
- Joanna Tannous
- John Lindahl
- Jonathan Willocks
- Josh Crabtree
- Julian Charron
- Junbin Choi
- Katie Copenhaver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kyle Davis
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Mengdawn Cheng
- Merlin Theodore
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nandhini Ashok
- Nihal Kanbargi
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Paul Groth
- Pradeep Ramuhalli
- Ritu Sahore
- Ryan Ogle
- Sana Elyas
- Sanjita Wasti
- Sudarsanam Babu
- Thomas Feldhausen
- Todd Toops
- Vincent Paquit
- Wei Zhang
- William Alexander
- Yang Liu
- Yaocai Bai
- Yasemin Kaygusuz
- Zhijia Du
- Zhili Feng

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.