Filter Results
Related Organization
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (26)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Adam M Guss
- Steven Guzorek
- Josh Michener
- Vipin Kumar
- Brian Post
- David Nuttall
- Liangyu Qian
- Soydan Ozcan
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Dan Coughlin
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- Jim Tobin
- John F Cahill
- Kuntal De
- Pum Kim
- Segun Isaac Talabi
- Serena Chen
- Tyler Smith
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- Vilmos Kertesz
- Xiaohan Yang
- Adam Stevens
- Alex Roschli
- Alex Walters
- Alice Perrin
- Austin Carroll
- Brian Sanders
- Brittany Rodriguez
- Chris Masuo
- Christopher Ledford
- Clay Leach
- Craig Blue
- Debjani Pal
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerald Tuskan
- Halil Tekinalp
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Joanna Tannous
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kyle Davis
- Mengdawn Cheng
- Merlin Theodore
- Michael Kirka
- Nadim Hmeidat
- Nandhini Ashok
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Paul Abraham
- Paula Cable-Dunlap
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Xianhui Zhao
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.