Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Eddie Lopez Honorato
- Ryan Heldt
- Soydan Ozcan
- Tyler Gerczak
- Xianhui Zhao
- Alex Roschli
- Bruce Moyer
- Christopher Hobbs
- Dali Wang
- Debjani Pal
- Erin Webb
- Evin Carter
- Halil Tekinalp
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jian Chen
- Justin Griswold
- Kitty K Mccracken
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Matt Kurley III
- Mengdawn Cheng
- Mike Zach
- Oluwafemi Oyedeji
- Padhraic L Mulligan
- Paula Cable-Dunlap
- Rodney D Hunt
- Sandra Davern
- Sanjita Wasti
- Tyler Smith
- Wei Zhang
- Zhili Feng

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.