Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Eddie Lopez Honorato
- Ryan Heldt
- Sergei V Kalinin
- Soydan Ozcan
- Stephen Jesse
- Tyler Gerczak
- Xianhui Zhao
- Alex Roschli
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Christopher Hobbs
- Dali Wang
- Erin Webb
- Evin Carter
- Halil Tekinalp
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jeremy Malmstead
- Jewook Park
- Jian Chen
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kitty K Mccracken
- Liam Collins
- Marti Checa Nualart
- Matt Kurley III
- Maxim A Ziatdinov
- Mengdawn Cheng
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paula Cable-Dunlap
- Rodney D Hunt
- Saban Hus
- Sanjita Wasti
- Steven Randolph
- Tyler Smith
- Wei Zhang
- Yongtao Liu
- Zhili Feng

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.