Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Vivek Sujan
- Adam M Guss
- Josh Michener
- Adam Siekmann
- Liangyu Qian
- Omer Onar
- Subho Mukherjee
- Andrzej Nycz
- Austin L Carroll
- Erdem Asa
- Isabelle Snyder
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Serena Chen
- Soydan Ozcan
- Udaya C Kalluri
- Xianhui Zhao
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Biruk A Feyissa
- Carrie Eckert
- Chris Masuo
- Clay Leach
- Dali Wang
- Debjani Pal
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Halil Tekinalp
- Hyeonsup Lim
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jeremy Malmstead
- Jian Chen
- Joanna Tannous
- Kitty K Mccracken
- Kyle Davis
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Sanjita Wasti
- Shajjad Chowdhury
- Tyler Smith
- Vilmos Kertesz
- Vincent Paquit
- Wei Zhang
- William Alexander
- Yang Liu
- Zhili Feng

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.