Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Sheng Dai
- Adam M Guss
- Chris Masuo
- Parans Paranthaman
- Ryan Dehoff
- Vincent Paquit
- Bishnu Prasad Thapaliya
- Josh Michener
- Peter Wang
- Zhenzhen Yang
- Alex Walters
- Brian Post
- Craig A Bridges
- Liangyu Qian
- Michael Kirka
- Rangasayee Kannan
- Shannon M Mahurin
- Venkatakrishnan Singanallur Vaidyanathan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Biruk A Feyissa
- Brian Gibson
- Carrie Eckert
- Clay Leach
- Daniel Jacobson
- Edgar Lara-Curzio
- Ilja Popovs
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Joshua Vaughan
- Kuntal De
- Li-Qi Qiu
- Luke Meyer
- Peeyush Nandwana
- Philip Bingham
- Saurabh Prakash Pethe
- Serena Chen
- Tolga Aytug
- Udaya C Kalluri
- Uday Vaidya
- Vilmos Kertesz
- William Carter
- Xiaohan Yang
- Ahmed Hassen
- Akash Jag Prasad
- Alexei P Sokolov
- Alice Perrin
- Amit Shyam
- Anees Alnajjar
- Austin L Carroll
- Ben Lamm
- Beth L Armstrong
- Brian Sanders
- Bruce Moyer
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Debjani Pal
- Diana E Hun
- Eric Wolfe
- Erin Webb
- Evin Carter
- Frederic Vautard
- Gerald Tuskan
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jayanthi Kumar
- Jaydeep Karandikar
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jerry Parks
- Jesse Heineman
- Joanna Tannous
- John Potter
- Kaustubh Mungale
- Kitty K Mccracken
- Kyle Davis
- Liam White
- Mark M Root
- Meghan Lamm
- Michael Borish
- Nageswara Rao
- Nandhini Ashok
- Nidia Gallego
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Paul Abraham
- Philip Boudreaux
- Phillip Halstenberg
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Santa Jansone-Popova
- Sarah Graham
- Shajjad Chowdhury
- Soydan Ozcan
- Subhamay Pramanik
- Sudarsanam Babu
- Tao Hong
- Tomonori Saito
- Tyler Smith
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.