Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Adam M Guss
- Josh Michener
- Hongbin Sun
- Liangyu Qian
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Eddie Lopez Honorato
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Prashant Jain
- Ryan Heldt
- Serena Chen
- Tyler Gerczak
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alexander Enders
- Alexander I Kolesnikov
- Alexander I Wiechert
- Alex Walters
- Andrew F May
- Austin Carroll
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Brian Sanders
- Callie Goetz
- Charles F Weber
- Chris Masuo
- Christopher Hobbs
- Christopher S Blessinger
- Clay Leach
- Costas Tsouris
- Debjani Pal
- Fred List III
- Gerald Tuskan
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilenne Del Valle Kessra
- Ilias Belharouak
- Isaac Sikkema
- Jay D Huenemann
- Jerry Parks
- Joanna Mcfarlane
- Joanna Tannous
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Kyle Davis
- Mahim Mathur
- Matthew B Stone
- Matt Kurley III
- Matt Vick
- Mike Zach
- Mingyan Li
- Nandhini Ashok
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Paul Abraham
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Sam Hollifield
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Victor Fanelli
- Vincent Paquit
- Vishaldeep Sharma
- Vittorio Badalassi
- Yang Liu
- Yasemin Kaygusuz

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur