Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam M Guss
- Josh Michener
- Liangyu Qian
- Yong Chae Lim
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Rangasayee Kannan
- Serena Chen
- Stephen M Killough
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Zhili Feng
- Adam Stevens
- Alex Walters
- Austin Carroll
- Brian Post
- Brian Sanders
- Bryan Lim
- Bryan Maldonado Puente
- Chris Masuo
- Clay Leach
- Corey Cooke
- Debjani Pal
- Diana E Hun
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jerry Parks
- Jian Chen
- Jiheon Jun
- Joanna Tannous
- Kyle Davis
- Nandhini Ashok
- Nolan Hayes
- Paul Abraham
- Peeyush Nandwana
- Peter Wang
- Philip Boudreaux
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- Vincent Paquit
- Wei Zhang
- William Peter
- Yang Liu
- Yasemin Kaygusuz
- Yiyu Wang
- Yukinori Yamamoto

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.