Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam M Guss
- Josh Michener
- Michael Kirka
- Amit K Naskar
- Liangyu Qian
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Christopher Ledford
- Daniel Jacobson
- Isaiah Dishner
- Jaswinder Sharma
- Jeff Foster
- John F Cahill
- Kuntal De
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Vincent Paquit
- Xiaohan Yang
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Arit Das
- Austin L Carroll
- Benjamin L Doughty
- Beth L Armstrong
- Brian Post
- Brian Sanders
- Chris Masuo
- Christopher Bowland
- Clay Leach
- Corson Cramer
- Debjani Pal
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Fred List III
- Gerald Tuskan
- Holly Humphrey
- Ilenne Del Valle Kessra
- James Klett
- Jay D Huenemann
- Jerry Parks
- Joanna Tannous
- Keith Carver
- Kyle Davis
- Nandhini Ashok
- Patxi Fernandez-Zelaia
- Paul Abraham
- Philip Bingham
- Richard Howard
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Steve Bullock
- Sudarsanam Babu
- Sumit Gupta
- Thomas Butcher
- Trevor Aguirre
- Uvinduni Premadasa
- Venkatakrishnan Singanallur Vaidyanathan
- Vera Bocharova
- William Peter
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang
- Yukinori Yamamoto

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.