Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Adam M Guss
- Josh Michener
- Liangyu Qian
- Srikanth Yoginath
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- James J Nutaro
- Jeff Foster
- John F Cahill
- Kuntal De
- Pratishtha Shukla
- Serena Chen
- Sudip Seal
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Walters
- Ali Passian
- Brian Sanders
- Chris Masuo
- Clay Leach
- Dali Wang
- Debjani Pal
- Gerald Tuskan
- Harper Jordan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jerry Parks
- Jian Chen
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- Kyle Davis
- Nance Ericson
- Nandhini Ashok
- Paul Abraham
- Varisara Tansakul
- Vincent Paquit
- Wei Zhang
- William Alexander
- Yang Liu
- Yasemin Kaygusuz
- Zhili Feng

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.