Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam M Guss
- Corson Cramer
- Steve Bullock
- Josh Michener
- Ying Yang
- Greg Larsen
- James Klett
- Liangyu Qian
- Trevor Aguirre
- Alice Perrin
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Christopher Ledford
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Michael Kirka
- Serena Chen
- Steven J Zinkle
- Udaya C Kalluri
- Vilmos Kertesz
- Vlastimil Kunc
- Xiaohan Yang
- Yanli Wang
- Yutai Kato
- Ahmed Hassen
- Alex Plotkowski
- Alex Walters
- Amit Shyam
- Austin Carroll
- Beth L Armstrong
- Brian Sanders
- Bruce A Pint
- Charlie Cook
- Chris Masuo
- Christopher Hershey
- Clay Leach
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- David S Parker
- Debjani Pal
- Dustin Gilmer
- Gerald Tuskan
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- James A Haynes
- Jay D Huenemann
- Jerry Parks
- Joanna Tannous
- John Lindahl
- Jong K Keum
- Jordan Wright
- Kyle Davis
- Mina Yoon
- Nadim Hmeidat
- Nandhini Ashok
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Paul Abraham
- Radu Custelcean
- Ryan Dehoff
- Sana Elyas
- Steven Guzorek
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tomonori Saito
- Tony Beard
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.