Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Adam M Guss
- Josh Michener
- Benjamin Manard
- Liangyu Qian
- Alexey Serov
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Cyril Thompson
- Daniel Jacobson
- Isaiah Dishner
- Jaswinder Sharma
- Jeff Foster
- John F Cahill
- Jonathan Willocks
- Kuntal De
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiang Lyu
- Xiaohan Yang
- Alexander I Wiechert
- Alex Walters
- Amit K Naskar
- Austin Carroll
- Beth L Armstrong
- Brian Sanders
- Charles F Weber
- Chris Masuo
- Clay Leach
- Costas Tsouris
- Debjani Pal
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Holly Humphrey
- Ilenne Del Valle Kessra
- James Szybist
- Jay D Huenemann
- Jerry Parks
- Joanna Mcfarlane
- Joanna Tannous
- Junbin Choi
- Khryslyn G Araño
- Kyle Davis
- Logan Kearney
- Marm Dixit
- Matt Vick
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nandhini Ashok
- Nihal Kanbargi
- Paul Abraham
- Ritu Sahore
- Todd Toops
- Vandana Rallabandi
- Vincent Paquit
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.