Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Adam M Guss
- Ali Passian
- Josh Michener
- Kyle Kelley
- Liangyu Qian
- Rama K Vasudevan
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Serena Chen
- Sergei V Kalinin
- Stephen Jesse
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Austin Carroll
- Bogdan Dryzhakov
- Brian Sanders
- Chris Masuo
- Claire Marvinney
- Clay Leach
- Debjani Pal
- Gerald Tuskan
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Jamieson Brechtl
- Jay D Huenemann
- Jerry Parks
- Jewook Park
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kyle Davis
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Nance Ericson
- Nandhini Ashok
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Paul Abraham
- Saban Hus
- Srikanth Yoginath
- Steven Randolph
- Varisara Tansakul
- Vincent Paquit
- Yang Liu
- Yasemin Kaygusuz
- Yongtao Liu

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.