Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Adam M Guss
- Rama K Vasudevan
- Josh Michener
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Liangyu Qian
- Maxim A Ziatdinov
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Kyle Kelley
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Aaron Werth
- Alex Walters
- Ali Passian
- Anton Ievlev
- Arpan Biswas
- Austin Carroll
- Brian Sanders
- Chris Masuo
- Clay Leach
- Debjani Pal
- Emilio Piesciorovsky
- Gary Hahn
- Gerald Tuskan
- Gerd Duscher
- Harper Jordan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jerry Parks
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- Kyle Davis
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Nance Ericson
- Nandhini Ashok
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Paul Abraham
- Raymond Borges Hink
- Sai Mani Prudhvi Valleti
- Srikanth Yoginath
- Stephen Jesse
- Sumner Harris
- Utkarsh Pratiush
- Varisara Tansakul
- Vincent Paquit
- Yang Liu
- Yarom Polsky
- Yasemin Kaygusuz

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called