Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Adam M Guss
- Josh Michener
- Kyle Kelley
- Liangyu Qian
- Rama K Vasudevan
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Serena Chen
- Sergei V Kalinin
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alexander Enders
- Alexander I Wiechert
- Alex Walters
- Anton Ievlev
- Austin Carroll
- Benjamin Manard
- Bogdan Dryzhakov
- Brian Sanders
- Charles F Weber
- Chris Masuo
- Christopher S Blessinger
- Clay Leach
- Costas Tsouris
- Debjani Pal
- Derek Dwyer
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jerry Parks
- Joanna Mcfarlane
- Joanna Tannous
- Jonathan Willocks
- Junghyun Bae
- Kevin M Roccapriore
- Kyle Davis
- Liam Collins
- Louise G Evans
- Marti Checa Nualart
- Matt Vick
- Maxim A Ziatdinov
- Mengdawn Cheng
- Nandhini Ashok
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Paul Abraham
- Paula Cable-Dunlap
- Richard L. Reed
- Stephen Jesse
- Steven Randolph
- Vandana Rallabandi
- Vincent Paquit
- Yang Liu
- Yasemin Kaygusuz
- Yongtao Liu

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.