Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Adam M Guss
- Josh Michener
- Amit K Naskar
- Anees Alnajjar
- Liangyu Qian
- Andrzej Nycz
- Austin L Carroll
- Isaiah Dishner
- Jaswinder Sharma
- Jeff Foster
- John F Cahill
- Kuntal De
- Logan Kearney
- Michael Toomey
- Nageswara Rao
- Nihal Kanbargi
- Serena Chen
- Udaya C Kalluri
- Xiaohan Yang
- Alex Walters
- Arit Das
- Benjamin L Doughty
- Biruk A Feyissa
- Carrie Eckert
- Chris Masuo
- Christopher Bowland
- Clay Leach
- Craig A Bridges
- Debjani Pal
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerald Tuskan
- Holly Humphrey
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Joanna Tannous
- Kyle Davis
- Mariam Kiran
- Paul Abraham
- Robert E Norris Jr
- Santanu Roy
- Sheng Dai
- Sumit Gupta
- Uvinduni Premadasa
- Vera Bocharova
- Vilmos Kertesz
- Vincent Paquit
- William Alexander
- Yang Liu

The eDICEML digital twin is proposed which emulates networks and hosts of an instrument-computing ecosystem. It runs natively on an ecosystem’s host or as a portable virtual machine.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.