Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate
(39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Diana E Hun
- Ali Passian
- Som Shrestha
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Philip Boudreaux
- Tomonori Saito
- Alex Plotkowski
- Amit Shyam
- Anees Alnajjar
- Bryan Maldonado Puente
- Joseph Chapman
- Muneer Alshowkan
- Nolan Hayes
- Peeyush Nandwana
- Srikanth Yoginath
- Zoriana Demchuk
- Blane Fillingim
- Brian Post
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Lauren Heinrich
- Mahabir Bhandari
- Nageswara Rao
- Pratishtha Shukla
- Radu Custelcean
- Sergiy Kalnaus
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Soydan Ozcan
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Venugopal K Varma
- Xianhui Zhao
- Yousub Lee
- Aaron Werth
- Achutha Tamraparni
- Adam Aaron
- Adam Siekmann
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Roschli
- Alice Perrin
- Amy Moore
- Andre O Desjarlais
- Andres Marquez Rossy
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Catalin Gainaru
- Charles D Ottinger
- Claire Marvinney
- Craig A Bridges
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Erin Webb
- Evin Carter
- Femi Omitaomu
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Gina Accawi
- Gurneesh Jatana
- Halil Tekinalp
- Haowen Xu
- Harper Jordan
- Jaswinder Sharma
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Josh Michener
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kitty K Mccracken
- Kuma Sumathipala
- Liangyu Qian
- Mariam Kiran
- Mark M Root
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Mengjia Tang
- Mina Yoon
- Nance Ericson
- Nancy Dudney
- Natasha Ghezawi
- Nicholas Richter
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Peter Wang
- Ramanan Sankaran
- Raymond Borges Hink
- Ryan Dehoff
- Sanjita Wasti
- Serena Chen
- Sheng Dai
- Stephen M Killough
- Sunyong Kwon
- Tyler Smith
- Varisara Tansakul
- Venkatakrishnan Singanallur Vaidyanathan
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- Yifang Liu
- Ying Yang
- Zhenglai Shen

The eDICEML digital twin is proposed which emulates networks and hosts of an instrument-computing ecosystem. It runs natively on an ecosystem’s host or as a portable virtual machine.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We’ve developed a more cost-effective cable driven robot system for installing prefabricated panelized building envelopes. Traditional cable robots use eight cables, which require extra support structures, making setup complex and expensive.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.