Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate
(38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Ali Passian
- Brian Post
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Vipin Kumar
- Alex Plotkowski
- Amit Shyam
- David Nuttall
- Joseph Chapman
- Muneer Alshowkan
- Peeyush Nandwana
- Soydan Ozcan
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Anees Alnajjar
- Blane Fillingim
- Costas Tsouris
- Dan Coughlin
- Daniel Jacobson
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Jim Tobin
- Lauren Heinrich
- Pratishtha Shukla
- Pum Kim
- Radu Custelcean
- Segun Isaac Talabi
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Roschli
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Brittany Rodriguez
- Claire Marvinney
- Craig A Bridges
- Craig Blue
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Erin Webb
- Evin Carter
- Femi Omitaomu
- Gary Hahn
- Georges Chahine
- Georgios Polyzos
- Gerry Knapp
- Halil Tekinalp
- Haowen Xu
- Harper Jordan
- Jaswinder Sharma
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jong K Keum
- Josh Crabtree
- Josh Michener
- Jovid Rakhmonov
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liangyu Qian
- Mariam Kiran
- Md Inzamam Ul Haque
- Merlin Theodore
- Mina Yoon
- Nadim Hmeidat
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Ramanan Sankaran
- Raymond Borges Hink
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Serena Chen
- Sheng Dai
- Steve Bullock
- Subhabrata Saha
- Sunyong Kwon
- Varisara Tansakul
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- Xianhui Zhao
- Ying Yang

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.