Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate
(38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Adam M Guss
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Josh Michener
- Nicholas Peters
- Alex Plotkowski
- Amit Shyam
- Costas Tsouris
- Joseph Chapman
- Liangyu Qian
- Muneer Alshowkan
- Peeyush Nandwana
- Srikanth Yoginath
- Alexander I Wiechert
- Andrzej Nycz
- Anees Alnajjar
- Biruk A Feyissa
- Blane Fillingim
- Brian Post
- Carrie Eckert
- Daniel Jacobson
- Gs Jung
- Gyoung Gug Jang
- Isaiah Dishner
- James A Haynes
- James J Nutaro
- Jeff Foster
- John F Cahill
- Kuntal De
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Serena Chen
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Alex Miloshevsky
- Alex Walters
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Austin Carroll
- Benjamin Manard
- Beth L Armstrong
- Brandon Miller
- Brian Sanders
- Brian Williams
- Charles F Weber
- Chris Masuo
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- Debangshu Mukherjee
- Debjani Pal
- Emilio Piesciorovsky
- Femi Omitaomu
- Gary Hahn
- Georgios Polyzos
- Gerald Tuskan
- Gerry Knapp
- Haowen Xu
- Harper Jordan
- Ilenne Del Valle Kessra
- Jaswinder Sharma
- Jay D Huenemann
- Jerry Parks
- Joanna Mcfarlane
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Jong K Keum
- Jovid Rakhmonov
- Kyle Davis
- Mariam Kiran
- Matt Vick
- Md Inzamam Ul Haque
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nandhini Ashok
- Nicholas Richter
- Olga S Ovchinnikova
- Paul Abraham
- Ramanan Sankaran
- Raymond Borges Hink
- Ryan Dehoff
- Sheng Dai
- Sunyong Kwon
- Vandana Rallabandi
- Varisara Tansakul
- Vimal Ramanuj
- Vincent Paquit
- Vivek Sujan
- Wenjun Ge
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.