Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate
(39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Alex Plotkowski
- Amit Shyam
- Anees Alnajjar
- Joseph Chapman
- Muneer Alshowkan
- Peeyush Nandwana
- Srikanth Yoginath
- Blane Fillingim
- Brian Post
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Lauren Heinrich
- Nageswara Rao
- Pratishtha Shukla
- Radu Custelcean
- Rob Moore II
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Benjamin Lawrie
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Chengyun Hua
- Claire Marvinney
- Craig A Bridges
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Femi Omitaomu
- Gabor Halasz
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Haowen Xu
- Harper Jordan
- Jaswinder Sharma
- Jiaqiang Yan
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Josh Michener
- Jovid Rakhmonov
- Liangyu Qian
- Mariam Kiran
- Matthew Brahlek
- Md Inzamam Ul Haque
- Mina Yoon
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Petro Maksymovych
- Ramanan Sankaran
- Raymond Borges Hink
- Ryan Dehoff
- Serena Chen
- Sheng Dai
- Sunyong Kwon
- Varisara Tansakul
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- Ying Yang

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

Photonic hyperentanglement involves pairs of photons entangled in multiple degrees of freedom (DoF), which hold promise for quantum communication protocols. However, the frequency DoF has received less attention due to constraints in evaluating such hyperentangled states.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

This disclosure presents a framework to identify critical conditions that an autonomous driving system will encounter on its mission.

Power utilities are increasingly deploying intelligent electronic devices inside and outside substations. Sharing data in substations between utility-owned devices and customer-owned distributed energy resources (DERs) risks the integrity and confidentiality of that data.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

Molecular Beam Epitaxy is a traditional technique for the synthesis of thin film materials used in the semiconducting and microelectronics industry. In its essence, the MBE technique heats crucibles filled with ultra-pure atomic elements under ultra high vacuum condition

A quantum communication system enabling two-mode squeezing distribution over standard fiber optic networks for enhanced data security.