Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (38)
Researcher
- Brian Post
- Peter Wang
- Ali Passian
- Amit Shyam
- Andrzej Nycz
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Ryan Dehoff
- Alex Plotkowski
- Blane Fillingim
- Chris Masuo
- Joseph Chapman
- Muneer Alshowkan
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Venkatakrishnan Singanallur Vaidyanathan
- Ahmed Hassen
- Amir K Ziabari
- Anees Alnajjar
- Chad Steed
- Costas Tsouris
- Diana E Hun
- Gs Jung
- Gyoung Gug Jang
- J.R. R Matheson
- James A Haynes
- James J Nutaro
- Joshua Vaughan
- Junghoon Chae
- Lauren Heinrich
- Philip Bingham
- Philip Boudreaux
- Pratishtha Shukla
- Radu Custelcean
- Rangasayee Kannan
- Sergiy Kalnaus
- Stephen M Killough
- Sudip Seal
- Sumit Bahl
- Travis Humble
- Vincent Paquit
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Roschli
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Annetta Burger
- Beth L Armstrong
- Brandon Miller
- Brian Gibson
- Brian Williams
- Bryan Lim
- Bryan Maldonado Puente
- Cameron Adkins
- Carter Christopher
- Chance C Brown
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Corey Cooke
- Craig A Bridges
- Craig Blue
- David Olvera Trejo
- Debangshu Mukherjee
- Debraj De
- Emilio Piesciorovsky
- Femi Omitaomu
- Gary Hahn
- Gautam Malviya Thakur
- Georgios Polyzos
- Gerry Knapp
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Haowen Xu
- Harper Jordan
- Isha Bhandari
- James Gaboardi
- Jaswinder Sharma
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jesse McGaha
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Jong K Keum
- Josh Michener
- Jovid Rakhmonov
- Kevin Sparks
- Liam White
- Liangyu Qian
- Liz McBride
- Luke Meyer
- Mariam Kiran
- Mark M Root
- Md Inzamam Ul Haque
- Michael Borish
- Michael Kirka
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nolan Hayes
- Obaid Rahman
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Ramanan Sankaran
- Raymond Borges Hink
- Ritin Mathews
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Samudra Dasgupta
- Sarah Graham
- Scott Smith
- Serena Chen
- Sheng Dai
- Steven Guzorek
- Sunyong Kwon
- Todd Thomas
- Tomas Grejtak
- Varisara Tansakul
- Vimal Ramanuj
- Vivek Sujan
- Vlastimil Kunc
- Wenjun Ge
- William Carter
- William Peter
- Xiuling Nie
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.