Filter Results
Related Organization
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (26)
- (-) Computing and Computational Sciences Directorate (38)
Researcher
- Adam M Guss
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Josh Michener
- Nicholas Peters
- Peeyush Nandwana
- Alex Plotkowski
- Amit Shyam
- Joseph Chapman
- Liangyu Qian
- Muneer Alshowkan
- Srikanth Yoginath
- Andrzej Nycz
- Anees Alnajjar
- Biruk A Feyissa
- Blane Fillingim
- Brian Post
- Carrie Eckert
- Chad Steed
- Costas Tsouris
- Daniel Jacobson
- Gs Jung
- Gyoung Gug Jang
- Isaiah Dishner
- James A Haynes
- James J Nutaro
- Jeff Foster
- John F Cahill
- Junghoon Chae
- Kuntal De
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Serena Chen
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Roschli
- Alex Walters
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Annetta Burger
- Austin Carroll
- Beth L Armstrong
- Brandon Miller
- Brian Sanders
- Brian Williams
- Bryan Lim
- Carter Christopher
- Chance C Brown
- Chris Masuo
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- Debangshu Mukherjee
- Debjani Pal
- Debraj De
- Emilio Piesciorovsky
- Erin Webb
- Evin Carter
- Femi Omitaomu
- Gary Hahn
- Gautam Malviya Thakur
- Georgios Polyzos
- Gerald Tuskan
- Gerry Knapp
- Haowen Xu
- Harper Jordan
- Ilenne Del Valle Kessra
- James Gaboardi
- Jaswinder Sharma
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Jesse McGaha
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jovid Rakhmonov
- Keju An
- Kevin Sparks
- Kitty K Mccracken
- Kyle Davis
- Liz McBride
- Mariam Kiran
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nandhini Ashok
- Nicholas Richter
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Pablo Moriano Salazar
- Paul Abraham
- Paula Cable-Dunlap
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Ryan Dehoff
- Samudra Dasgupta
- Sheng Dai
- Soydan Ozcan
- Sunyong Kwon
- Todd Thomas
- Tomas Grejtak
- Tyler Smith
- Varisara Tansakul
- Vimal Ramanuj
- Vincent Paquit
- Vivek Sujan
- Wenjun Ge
- Xianhui Zhao
- Xiuling Nie
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang
- Yiyu Wang

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.