Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (38)
Researcher
- Andrzej Nycz
- Ali Passian
- Chris Masuo
- Amit Shyam
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Peter Wang
- Alex Plotkowski
- Alex Walters
- Benjamin Manard
- Brian Post
- Costas Tsouris
- Joseph Chapman
- Muneer Alshowkan
- Srikanth Yoginath
- Alexander I Wiechert
- Anees Alnajjar
- Blane Fillingim
- Brian Gibson
- Chad Steed
- Cyril Thompson
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Joshua Vaughan
- Junghoon Chae
- Lauren Heinrich
- Luke Meyer
- Pratishtha Shukla
- Radu Custelcean
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Udaya C Kalluri
- William Carter
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Akash Jag Prasad
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Annetta Burger
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Bryan Lim
- Calen Kimmell
- Carter Christopher
- Chance C Brown
- Charles F Weber
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- Debangshu Mukherjee
- Debraj De
- Emilio Piesciorovsky
- Femi Omitaomu
- Gary Hahn
- Gautam Malviya Thakur
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Haowen Xu
- Harper Jordan
- J.R. R Matheson
- James Gaboardi
- Jaswinder Sharma
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jesse McGaha
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- John Potter
- Jonathan Willocks
- Jong K Keum
- Josh Michener
- Jovid Rakhmonov
- Kevin Sparks
- Liangyu Qian
- Liz McBride
- Mariam Kiran
- Matt Vick
- Md Inzamam Ul Haque
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Riley Wallace
- Ritin Mathews
- Ryan Dehoff
- Samudra Dasgupta
- Serena Chen
- Sheng Dai
- Sunyong Kwon
- Todd Thomas
- Tomas Grejtak
- Vandana Rallabandi
- Varisara Tansakul
- Vimal Ramanuj
- Vincent Paquit
- Vivek Sujan
- Vladimir Orlyanchik
- Wenjun Ge
- Xiaohan Yang
- Xiuling Nie
- Ying Yang
- Yiyu Wang

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.