Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (38)
Researcher
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Alex Plotkowski
- Amit Shyam
- Joseph Chapman
- Muneer Alshowkan
- Ryan Dehoff
- Srikanth Yoginath
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Chad Steed
- Costas Tsouris
- Diana E Hun
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Lauren Heinrich
- Philip Bingham
- Philip Boudreaux
- Pratishtha Shukla
- Radu Custelcean
- Sergiy Kalnaus
- Stephen M Killough
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Vincent Paquit
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Alexander I Wiechert
- Alexandre Sorokine
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Annetta Burger
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Bryan Lim
- Bryan Maldonado Puente
- Carter Christopher
- Chance C Brown
- Claire Marvinney
- Clinton Stipek
- Corey Cooke
- Craig A Bridges
- Daniel Adams
- Debangshu Mukherjee
- Debraj De
- Emilio Piesciorovsky
- Femi Omitaomu
- Gary Hahn
- Gautam Malviya Thakur
- Georgios Polyzos
- Gerry Knapp
- Gina Accawi
- Gurneesh Jatana
- Haowen Xu
- Harper Jordan
- James Gaboardi
- Jaswinder Sharma
- Jesse McGaha
- Jessica Moehl
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Josh Michener
- Jovid Rakhmonov
- Kevin Sparks
- Liangyu Qian
- Liz McBride
- Mariam Kiran
- Mark M Root
- Md Inzamam Ul Haque
- Michael Kirka
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nolan Hayes
- Obaid Rahman
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Peter Wang
- Philipe Ambrozio Dias
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Ryan Kerekes
- Sally Ghanem
- Samudra Dasgupta
- Serena Chen
- Sheng Dai
- Sunyong Kwon
- Taylor Hauser
- Todd Thomas
- Tomas Grejtak
- Varisara Tansakul
- Vimal Ramanuj
- Viswadeep Lebakula
- Vivek Sujan
- Wenjun Ge
- Xiuling Nie
- Ying Yang
- Yiyu Wang

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.