Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Michael Kirka
- Rob Moore II
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexander I Kolesnikov
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Bekki Mills
- Benjamin Lawrie
- Blane Fillingim
- Brian Post
- Chengyun Hua
- Christopher Ledford
- Clay Leach
- David Nuttall
- Gabor Halasz
- James Haley
- Jiaqiang Yan
- John Wenzel
- Mark Loguillo
- Matthew Brahlek
- Matthew B Stone
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Petro Maksymovych
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Venkatakrishnan Singanallur Vaidyanathan
- Victor Fanelli
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Neutron beams are used around the world to study materials for various purposes.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Molecular Beam Epitaxy is a traditional technique for the synthesis of thin film materials used in the semiconducting and microelectronics industry. In its essence, the MBE technique heats crucibles filled with ultra-pure atomic elements under ultra high vacuum condition

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.