Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam M Guss
- Ryan Dehoff
- Josh Michener
- Edgar Lara-Curzio
- Liangyu Qian
- Vincent Paquit
- Ying Yang
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Clay Leach
- Daniel Jacobson
- Eric Wolfe
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Michael Kirka
- Serena Chen
- Steven J Zinkle
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Adam Willoughby
- Ahmed Hassen
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Austin L Carroll
- Bishnu Prasad Thapaliya
- Blane Fillingim
- Brandon Johnston
- Brian Post
- Brian Sanders
- Bruce A Pint
- Charles Hawkins
- Chris Masuo
- Christopher Ledford
- David Nuttall
- Debjani Pal
- Frederic Vautard
- Gerald Tuskan
- Ilenne Del Valle Kessra
- James Haley
- Jay D Huenemann
- Jerry Parks
- Joanna Tannous
- Kyle Davis
- Marie Romedenne
- Nandhini Ashok
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Paul Abraham
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Rishi Pillai
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Tim Graening Seibert
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz
- Yukinori Yamamoto

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).