Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Alexey Serov
- Eddie Lopez Honorato
- Jaswinder Sharma
- Michael Kirka
- Ryan Heldt
- Tyler Gerczak
- Vincent Paquit
- Xiang Lyu
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit K Naskar
- Amit Shyam
- Andres Marquez Rossy
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Callie Goetz
- Christopher Hobbs
- Christopher Ledford
- Clay Leach
- David Nuttall
- Fred List III
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Haley
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Keith Carver
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Matt Kurley III
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Richard Howard
- Ritu Sahore
- Rodney D Hunt
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Thomas Butcher
- Todd Toops
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.