Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Eddie Lopez Honorato
- Ryan Heldt
- Tyler Gerczak
- Viswadeep Lebakula
- Alexandre Sorokine
- Annetta Burger
- Callie Goetz
- Carter Christopher
- Chance C Brown
- Christopher Hobbs
- Clinton Stipek
- Daniel Adams
- Debraj De
- Eve Tsybina
- Fred List III
- Gautam Malviya Thakur
- Huixin (anna) Jiang
- James Gaboardi
- Jamieson Brechtl
- Jesse McGaha
- Jessica Moehl
- Kai Li
- Kashif Nawaz
- Keith Carver
- Kevin Sparks
- Liz McBride
- Matt Kurley III
- Philipe Ambrozio Dias
- Richard Howard
- Rodney D Hunt
- Taylor Hauser
- Thomas Butcher
- Todd Thomas
- Xiaobing Liu
- Xiuling Nie

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.