Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Eddie Lopez Honorato
- Ryan Heldt
- Tyler Gerczak
- Vincent Paquit
- Yaosuo Xue
- Akash Jag Prasad
- Calen Kimmell
- Canhai Lai
- Christopher Hobbs
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Fei Wang
- James Haley
- James Parks II
- Jaydeep Karandikar
- Matt Kurley III
- Phani Ratna Vanamali Marthi
- Rafal Wojda
- Rodney D Hunt
- Ryan Dehoff
- Sreenivasa Jaldanki
- Suman Debnath
- Sunil Subedi
- Vladimir Orlyanchik
- Yonghao Gui
- Zackary Snow

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.