Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Michael Kirka
- Hongbin Sun
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Christopher Ledford
- Eddie Lopez Honorato
- Peeyush Nandwana
- Prashant Jain
- Ryan Heldt
- Tyler Gerczak
- Alexander Enders
- Alexander I Wiechert
- Alice Perrin
- Amir K Ziabari
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Beth L Armstrong
- Brad Johnson
- Brandon A Wilson
- Brian Post
- Callie Goetz
- Charles F Weber
- Christopher Hobbs
- Christopher S Blessinger
- Corson Cramer
- Costas Tsouris
- Fred List III
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- James Klett
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Philip Bingham
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Sam Hollifield
- Sarah Graham
- Steve Bullock
- Sudarsanam Babu
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Trevor Aguirre
- Ugur Mertyurek
- Vandana Rallabandi
- Venkatakrishnan Singanallur Vaidyanathan
- Venugopal K Varma
- Vincent Paquit
- Vishaldeep Sharma
- Vittorio Badalassi
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.