Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Yong Chae Lim
- Eddie Lopez Honorato
- James A Haynes
- Peeyush Nandwana
- Rangasayee Kannan
- Ryan Dehoff
- Ryan Heldt
- Sumit Bahl
- Tyler Gerczak
- Zhili Feng
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Brian Post
- Bryan Lim
- Christopher Hobbs
- Gerry Knapp
- Jian Chen
- Jiheon Jun
- Jovid Rakhmonov
- Matt Kurley III
- Nicholas Richter
- Priyanshi Agrawal
- Rodney D Hunt
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Tomas Grejtak
- Wei Zhang
- William Peter
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.