Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Corson Cramer
- Steve Bullock
- Adam M Guss
- Ali Passian
- Josh Michener
- Greg Larsen
- James Klett
- Joseph Chapman
- Liangyu Qian
- Nicholas Peters
- Trevor Aguirre
- Andrzej Nycz
- Hsuan-Hao Lu
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Joseph Lukens
- Kuntal De
- Muneer Alshowkan
- Serena Chen
- Udaya C Kalluri
- Vlastimil Kunc
- Xiaohan Yang
- Ahmed Hassen
- Alex Walters
- Anees Alnajjar
- Austin L Carroll
- Beth L Armstrong
- Biruk A Feyissa
- Brian Williams
- Carrie Eckert
- Charlie Cook
- Chris Masuo
- Christopher Hershey
- Christopher Ledford
- Claire Marvinney
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Debjani Pal
- Dustin Gilmer
- Gerald Tuskan
- Harper Jordan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jordan Wright
- Kyle Davis
- Mariam Kiran
- Michael Kirka
- Nadim Hmeidat
- Nance Ericson
- Paul Abraham
- Sana Elyas
- Srikanth Yoginath
- Steven Guzorek
- Tomonori Saito
- Tony Beard
- Varisara Tansakul
- Vilmos Kertesz
- Vincent Paquit
- Yang Liu

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The technologies provide additively manufactured thermal protection system.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.