Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Adam M Guss
- Corson Cramer
- Josh Michener
- Ying Yang
- Ahmed Hassen
- Greg Larsen
- James Klett
- Liangyu Qian
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Alice Perrin
- Andrzej Nycz
- Austin L Carroll
- Christopher Ledford
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Michael Kirka
- Serena Chen
- Steven Guzorek
- Steven J Zinkle
- Udaya C Kalluri
- Xiaohan Yang
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Alex Walters
- Amit Shyam
- Beth L Armstrong
- Biruk A Feyissa
- Brittany Rodriguez
- Bruce A Pint
- Carrie Eckert
- Charlie Cook
- Chris Masuo
- Christopher Hershey
- Clay Leach
- Costas Tsouris
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Debjani Pal
- Dustin Gilmer
- Gerald Tuskan
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- James A Haynes
- Jay D Huenemann
- Joanna Tannous
- John Lindahl
- Jong K Keum
- Jordan Wright
- Kyle Davis
- Mina Yoon
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Paul Abraham
- Radu Custelcean
- Ryan Dehoff
- Sana Elyas
- Subhabrata Saha
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Vilmos Kertesz
- Vincent Paquit
- Vipin Kumar
- Weicheng Zhong
- Wei Tang
- William Alexander
- Xiang Chen
- Yan-Ru Lin
- Yang Liu

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).