Filter Results
Related Organization
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Biological and Environmental Systems Science Directorate (29)
Researcher
- Adam M Guss
- Josh Michener
- Liangyu Qian
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Eddie Lopez Honorato
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Ryan Heldt
- Serena Chen
- Soydan Ozcan
- Tyler Gerczak
- Udaya C Kalluri
- Vilmos Kertesz
- Xianhui Zhao
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Brian Sanders
- Callie Goetz
- Chris Masuo
- Christopher Hobbs
- Clay Leach
- Dali Wang
- Debjani Pal
- Erin Webb
- Evin Carter
- Fred List III
- Gerald Tuskan
- Halil Tekinalp
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Jian Chen
- Joanna Tannous
- Keith Carver
- Kitty K Mccracken
- Kyle Davis
- Matt Kurley III
- Mengdawn Cheng
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Richard Howard
- Rodney D Hunt
- Sanjita Wasti
- Thomas Butcher
- Tyler Smith
- Vincent Paquit
- Wei Zhang
- William Alexander
- Yang Liu
- Yasemin Kaygusuz
- Zhili Feng

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

We have developed bacterial strains that can convert sustainable feedstocks and waste feedstocks into chemical precursors for next generation plastics.

ORNL has identified a panel of novel nylon hydrolases with varied substrate and product selectivity.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.

Genetic modification of microbes that are thermophiles—ones that grow at elevated temperatures—is extremely challenging. Tools developed for E. coli, a typical host for protein production, typically do not function at elevated temperatures.

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).