Filter Results
Related Organization
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (26)
Researcher
- Adam M Guss
- Josh Michener
- Hongbin Sun
- Liangyu Qian
- Alexey Serov
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- Jaswinder Sharma
- Jeff Foster
- John F Cahill
- Kuntal De
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiang Lyu
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Amit K Naskar
- Austin Carroll
- Beth L Armstrong
- Brian Sanders
- Chris Masuo
- Clay Leach
- Debjani Pal
- Erin Webb
- Evin Carter
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Holly Humphrey
- Ilenne Del Valle Kessra
- Ilias Belharouak
- James Szybist
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Joanna Tannous
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Kitty K Mccracken
- Kyle Davis
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Mengdawn Cheng
- Michael Toomey
- Michelle Lehmann
- Nandhini Ashok
- Nihal Kanbargi
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ritu Sahore
- Ruhul Amin
- Soydan Ozcan
- Thien D. Nguyen
- Todd Toops
- Tyler Smith
- Vincent Paquit
- Vishaldeep Sharma
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.