Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Eddie Lopez Honorato
- Ryan Heldt
- Stephen M Killough
- Tyler Gerczak
- Bruce Moyer
- Bryan Maldonado Puente
- Christopher Hobbs
- Corey Cooke
- Debjani Pal
- Diana E Hun
- Jeffrey Einkauf
- Jennifer M Pyles
- John Holliman II
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Matt Kurley III
- Mike Zach
- Nolan Hayes
- Padhraic L Mulligan
- Peter Wang
- Philip Boudreaux
- Rodney D Hunt
- Ryan Kerekes
- Sally Ghanem
- Sandra Davern

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).