Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Chad Steed
- Eddie Lopez Honorato
- Junghoon Chae
- Mingyan Li
- Ryan Heldt
- Sam Hollifield
- Travis Humble
- Tyler Gerczak
- Vlastimil Kunc
- Ahmed Hassen
- Brian Weber
- Callie Goetz
- Christopher Hobbs
- Dan Coughlin
- Fred List III
- Isaac Sikkema
- Jim Tobin
- Joseph Olatt
- Josh Crabtree
- Keith Carver
- Kevin Spakes
- Kim Sitzlar
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Matt Kurley III
- Merlin Theodore
- Oscar Martinez
- Richard Howard
- Rodney D Hunt
- Samudra Dasgupta
- Steven Guzorek
- Subhabrata Saha
- Thomas Butcher
- T Oesch
- Vipin Kumar

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.