Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Adam M Guss
- Josh Michener
- Andrzej Nycz
- Liangyu Qian
- William Carter
- Alex Roschli
- Alex Walters
- Brian Post
- Chris Masuo
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Luke Meyer
- Serena Chen
- Xiaohan Yang
- Aaron Werth
- Adam Stevens
- Ali Passian
- Amy Elliott
- Austin Carroll
- Cameron Adkins
- Carrie Eckert
- Clay Leach
- Emilio Piesciorovsky
- Erin Webb
- Evin Carter
- Gary Hahn
- Gerald Tuskan
- Harper Jordan
- Ilenne Del Valle Kessra
- Isha Bhandari
- Jason Jarnagin
- Jay D Huenemann
- Jeremy Malmstead
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- Joshua Vaughan
- Kitty K Mccracken
- Kyle Davis
- Liam White
- Mark Provo II
- Michael Borish
- Nance Ericson
- Oluwafemi Oyedeji
- Paul Abraham
- Peter Wang
- Rangasayee Kannan
- Raymond Borges Hink
- Rob Root
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Srikanth Yoginath
- Sudarsanam Babu
- Tyler Smith
- Udaya C Kalluri
- Varisara Tansakul
- Vilmos Kertesz
- Vincent Paquit
- William Peter
- Xianhui Zhao
- Yang Liu
- Yarom Polsky
- Yukinori Yamamoto

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi