Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ali Passian
- Ying Yang
- Joseph Chapman
- Nicholas Peters
- Alice Perrin
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Amit Shyam
- Anees Alnajjar
- Benjamin Lawrie
- Brian Williams
- Bruce A Pint
- Chengyun Hua
- Christopher Ledford
- Claire Marvinney
- Costas Tsouris
- David S Parker
- Gabor Halasz
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- James A Haynes
- Jiaqiang Yan
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Mariam Kiran
- Michael Kirka
- Mina Yoon
- Nance Ericson
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Petro Maksymovych
- Radu Custelcean
- Ryan Dehoff
- Srikanth Yoginath
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

A quantum communication system enabling two-mode squeezing distribution over standard fiber optic networks for enhanced data security.

An ultrabroadband, polarization-entangled photon source for C+L-band quantum networks, enabling adaptive, high-fidelity entanglement distribution.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

Technologies directed quantum spectroscopy and imaging with Raman and surface-enhanced Raman scattering are described.

High-performance cerium-based permanent magnet materials have been developed to reduce reliance on scarce rare-earth elements.